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Abstract

Frequently, it is advantageous for an agent to model othemtagn order to pre-

dict their behavior during an interaction. Modeling othassrational has a long
tradition in Al and game theory, but modeling other agentggattures from ratio-

nality is difficult and controversial. This paper propodesttbounded rationality
be modeled as errors the agent being modeled is making watldidg on actions.

We are motivated by the work on quantal response equilibrizehavioral game
theory which uses Nash equilibria as the solution conceptcohtrast, we use
decision-theoretic maximization of expected utility amply the models within

the framework of interactive POMDPs. Quantal responsemagsithat a decision
maker is rational, i.e., is maximizing his expected utjlliyt only approximately

so, with an error rate characterized by a single error paemAnother agent’s

error rate may be unknown and needs to be estimated duringenadtion. We

show that the error rate of the quantal response can be éstimaing Bayesian
update of a suitable conjugate prior, and that it has a seifficstatistic under

strong simplifying assumptions. However, if the simplifgiassumptions are re-
laxed, the quantal response does not admit a finite suffistatistic and a more
complex update is needed. This confirms the difficulty of gsiimple models of

bounded rationality in general settings.

1 Introduction

In Al, an agent’s (perfect) rationality is defined as the digeability to execute actions that, at

every instant, maximize the agent's expected utility, gitke information it has acquired from

the environment [13]. Let us note two aspects of this dedinitiFirst, the fact that the acquired

information may be limited does not preclude perfect ratliy In other words, an agent may

have very limited information but still be perfectly ratan Second, the above definition does not
specify any particular procedure an agent is to use to degldeh action to execute. Further,

the definition is completely independent of any details efithplementation of any such decision
making procedure.

The notion of bounded rationality received a lot of attemtio economics and psychology. Simon
[14] coined the term and suggested it as an alternativeitmiity. Simon pointed out that perfectly
rational decision making is often difficult in practice duditnited cognitive and/or computational
resources. He proposed that humanssatesficers as opposed to perfect optimizers, and that they
use heuristics to make decisions, rather than optimizaties. Gigerenzer [7, 6] argued that simple
heuristics could actually lead to better decisions thaortéally optimal procedures. The use of
heuristics was also studied by Kahneman [9], who proposedn alternative to perfect rationality
called prospect theory. Rubinstein [12] proposed that @eelato model an agent’s decision-making
procedures explicitly in order to model the agent’s boundgidnality adequately.



This paper builds on an approach to modeling bounded rdifipnalled quantal response [2, 10, 11].

It is a simple model which uses a single error parameter. @Quegsponse is simple in that it does

not attempt to model the procedures, and their possiblediions, the agent may use to decide on
action. The great advantage of this model is that, firstetbgist a myriad of procedural mechanisms
by which perfect rationality could be implemented, heisgswhich could be used, and possible
ways in which any of these could have its functionality liadtby the specific computational or

cognitive architecture of the agent in question. Seconderaf these implementation details and
architectural limitations are observable by the exterbakover who is doing the modeling. In other
words, quantal response abstracts away the unobservablagiars specific to implementation and
treats them amoisewhich produces non-systematic departures from perfeictality.

The models of bounded rational agents we are constructdiganded to be used within interactive
partially observable Markov decision processes (I-POM#sIn I-POMDPs, agents maintain be-
liefs about the state of the world, as in classical POMDPd, about the other agents with whom
they interact. These beliefs are probability distribusigpanned on the space of all possible states
of the environment and all possible models of the other ageAgents best respond to their be-
liefs using decision-theoretic expected utility maxintiaa, like in classical POMDPs. Intentional
models of other agents specify their preferences (payafftians), action sets, and beliefs, and are
analogous to POMDP-like specifications of the other agetdsision-making. The probabilities
are assigned to various models since the internals of thex atients’ specifications are not directly
observable. In other words, an agent may not know before, lsmydthe payoff function of another
agent, but may be able to probabilistically infer their likpayoffs by observing their actions.

To make room for bounded rationality of the other agents, efnd a notion of approximately
intentional agent model. It is analogous to perfectly raiocagent model but with a noise factor
inversely proportional to an error parameterAccording to quantal response [2, 10, 11], probabil-
ities of actions are given by the logit function of the actibexpected utilities. Thus actions that are
suboptimal are possible, but their probabilities increaik their expected utilities.

Quantal response specifies the probabilities of an agectisns given their expected utilities and
the agent’s error parametey, An additional complication is that an agent’s error parenes not
directly observable. Instead, it must be inferred basederagent’s observed behavior. We take a
Bayesian approach to this and propose that the modeling aggntain a probability distribution
over possible values of for the modeled agent, and that this probability be updatednanew
actions are observed. Intuitively, if an agent is obsenaihg rationally then, over time the error
rate attributed to this agent should decrease (and siian inverse error, larger valuesoshould
become more likely). If, on the other hand, the modeled aigdnéquently observed acting in ways
that depart from perfect rationality, then the error ratélatted to it should increase (and smaller
values of\ should become more likely).

Below we show how the update of the error parameter modeloumdbed rationality of another
agent can be performed. We also show that in simple spedatcavhen the interactionépisodic
the error rate admits a sufficient statistic. We then deridéstibution over) that is a member of
a family of conjugate priors. That means that the update @fdiktribution over\ is particularly
simple and that it results in another distribution in the edamily of parametrized distributions.
We further show that if the simplifying assumptions arexeth then there is no sufficient statistic
and no conjugate prior ovex. In these cases we derive the update of the error parameten e
general, and more complex, belief update in I-POMDPs.

2 Logit Quantal Response

For simplicity, we assume that a modeling agent, calléd considering the behavior of one other
agent,. The logit quantal response is defined as follows [2, 10, 11]:
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where{q; : 1 = 1,2,3,...,m} is a set of all possible actions of the agefita;) is the probability of
the ageny taking the action;. u,, € R is the expected utility of action; to agentj and\ > 0 is
the (inverse) error rate of the agent\ represents how rational agehis: greaterA\ makes it more



likely that j takes actions which have higher utilities. When- +o00, P(a;) = 1 for the action
which has the highest expected utilitgnd P(a;) = 0 for all other actions. This means aggris
perfectly rational because he always chooses an actiorthéthest expected utility. Whex= 0,
P(a;) =1/m, ¥j =1,2,3,...,m, which means agertchooses actions at random.

It is likely that the error rate\ of agent; is not directly observable to agent Bayesian approach
allows agent to learn this rate during interactions. To do this ageneeds a prior distribution,
f(\), which representss current knowledge about agejfis error rate, and to observe agers
action,a; at the current step. The updated distribution is:
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Using the above formula, agehtan maintain his knowledge about aggistbounded rationality
by repeatedly updatingi(\) during interaction.

Formula (2) may not be easy to apply because after updating ) several times, it becomes more
and more complicated. To overcome this it is convenient ¢k limr a conjugate prior family. In
Bayesian probability, if the posterior distribution is hetsame family as the prior distribution, then
this prior is called aonjugate prior[3, 4]. Conjugate priors are convenient because they make th
updating process tractable; one just needs to update tampgers of the conjugate prior distribution
(hyperparameters) to realize the Bayesian update.

3 Static Episodic Environmentswith Perfect Observability

In this section we consider the simplest case, when ageakpected utilities.,, for all actions are
knownto agent and remain the same during the interaction. In other woigkng is not updating
his beliefs since the environment is static and episodit b8 is observingj acting in the same
decision-making situation repeatedly. The derivatiorobeillows techniques in [3, 4].

Consider the following family of distributions ovex.
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wheren and u are hyperparameters. Hereis a natural number including zero, andis re-
stricted by following:u < nmax; u,,. One can verify (3) is a probability density function since
Jo_ f(X\;u,n)dX = 1, given the restrictions over andu.

Proposition 1: The family of distributionsf (\; «,n) in (3) is a conjugate family of distributions
over \ in static episodic environments with known utilities ofiacs.

The proof of Proposition 1 establishes how to update the ipgvameters of our conjugate prior
after observing that agefitexecuted his actioa;, with expected utilityu,; :

FOvu,n) 25 f(u+ug,,n+ 1). (4)

Note that the integral in the denominator fif\; v, n) does not always have an analytical solution,
so we have to use numerical methods to calculate its value.

One can verify that once there is a valid prior, all the pasterare always valid. The question also
arises as to what is an appropriate prior agestiould choose before any observations. Often one
looks for an uninformed prior. In our cagé\; —¢, 0), wheree > 0 is a small positive value, is such
an uninformed prior; it is almost flat over the positive realues of), as we show in the example
below.

YIf there are many, saj, optimal actions with the same expected utilities, tiia;) = 1/h for each of
them.



4 Example
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Figure 1: Example conjugate priof{\; —0.1,0)

Let us assume that ageptchooses from among three(= 3) actions, with following expected
utilities: u,, = 0,uq, = 2,u,, = 10. As we mentioned we assume that the expected utilities
of agentj are known to agent, and that they do not change. Let the priorffe; —0.1,0). Let

us first compute the expected value of the error paramettiributes toj under this distribution:
E(A) = f0°° Af(A) dX = 10.0. Using the formula of total probability for each actionofve get:
P(aj) = f0°° P(a;j|N\) f(A) dX. Thus the prior probabilities attributes to each of’s actions are:
P(a1) = 0.00524, P(az) = 0.00699, P(a3) = 0.98777. Figure 1 shows the initial prior. Note that
this uninformative prior assigns relatively high probatit weight to high values ok and hence
high degree of’s rationality.

A's Distribution E(A) P(ay) P(as) P(as)

f(A;—0.1,0) 10.0000 0.00524 0.00699 0.98777
£(X;29.9,3) 10.2477 0.00138 0.00229 0.99633
£(A;299.9,30) 10.5309 0.00010 0.00029 0.99961
I
/(

X;11.9,3) 0.1069 0.20663 0.24147 0.55190
A;119.9,30) 0.0328 0.28959 0.30785 0.40256

Table 1: Probabilities of agerjts actions derived from various distributions over errorguaeter.
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Figure 2:f(X;29.9, 3), updated after observing three rational actions.

Assume agenf acts rationally and always chooses his best actignThen Figure 2 and Figure 3
show the posterior after three observatiofis\{ 29.9, 3)) and after 30 observationg (}; 299.9, 30))

of j's actionas. We can see that higher values)obecome more likely if the agent always chooses
the action with the best utility. We can also compute the pbilifies of the three actions under these
two posteriors, which are shown in Table 1.

Now let us assume that agenbehaves randomly. Within the first three actions, he choeaels of
his actions:;, a; andas once. The updated distribution oviéserror parameter is thef( \; 11.9, 3),
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Figure 3:£(X;299.9,30), updated after observing 30 rational actions.
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Figure 4: f(X; 11.9, 3), updated after observing three random actions.

which is shown in Figure 4. Further, if withifis 30 actions he chooses for ten timesga, for ten
times, andug for ten times; then the posterior f§A; 119.9, 30), which is shown in Figure 5. The
results are intuitive. Thus, if agentbehaves randomly, lower values #&f indicating stronger
departure from perfect rationality, become more likelylbilities of the three actions under these
two posteriors are also shown in Table 1.

5 Sequential Dynamic Environment with Perfect Observability of Finite
Types

In this section, we extend our approach to more complex ceggnamic sequential environment.
Again, we assume that expected utilitiegjsfactions are known tg but now, since agentmay be
updating his beliefs, the expected utilities of his actidosiot remain constant but can take a finite
number of values. We refer to each of the beliefs of agetdgether with his payoff function and
other elements of his POMDP, g@'s type,f,. Thus, the set of possible types of aggn®;, hask
possible elements, 2, ..., K. We denotd/ (a;|0; = k) = u,, &, wherek = 1,2,..., K and assume
that indexk is observable (or computable) by agéntThen the logit quantal response (1) for the
probability of agenyj taking actionz; given hiskth type is:

e)\uaj’k
P(ajlk,\) = W (5)

Now Bayesian update, analogous to equation (2), becomes:
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Figure 5:f(X;119.9, 30), updated after observing 30 random actions.

We now have a proposition analogous to Proposition 1 in 8e@&i Consider the following family
of distributions:
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wheren; = 0,1,....Vk = 1,...,K; u < Zszl(nkmaXl uq, k). One can verify that (7) is a
valid probability density function since integral of thendeninator converges if and only if <

Z,[f:l(nk Max; Ug, k)-
Proposition 2: The family of distributions in (7)f(\; u, n1,ns, ...,nk) is @ conjugate family of

distributions oven\ in a sequential dynamic environment with perfect obsetitglaf finite number
of types.

)

f(A;U,nl,ng, ,TlK) =

Similarly to the simpler case of Proposition 1, the proof ofposition 2 establishes the update of
the hyperparameters of the conjugate prior based on thewatasaction,a;, with expected utility
Uay,k .

a;,k
Jvu,ni,ng, i) == FN U+ Uq, oy 015 N2y ooy Ne—1, Mk + 1, Mg 0y ). (8)

Similarly to Section 3, once there is a valid prior, efg\; u, n1,ns, ..., nx ), all the posteriors are
always valid. An uninformative prior agentan choose before observing any;&f actions can be
f(A;—¢€,0,0,...,0). Then after any number of observations the cureeistthe accumulated utility
of all actions the agent has taken miniisand currenty, is the counter of occurrence of thgh
type.

6 Sequential Dynamic Environmentswith Perfect Observability of
Continuous Types

Let us consider an even more general case, in which the edgattitiesu,, are not limited to a
finite number of values but can lie in some interval or evenhanréal line:

Aug
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whereu; < uq, < w/',l = 1,2,....,m, u; > —oo andu;” < oo are lower and upper bounds

of the expected utilities:,,, and whereu is a vector of expected utilities of ath actions,u =
(Uay, Uay, ---s Ua,, ). Again assume,,, are known to agent and he observes agej actiona;.

Plajlu, A) =

Similarly to Section 5, the Bayesian update equation witfitiooious types is

P(aj|u,\)f(N) '
[ Plajlu, N) f(N) X

f(ANaj, uw) = (10)



If we want to update the distribution of it would be convenient to find a conjugate prior of (9)
for \. However, forming a conjugate prior in this case is not eaggl may be impossible. The
reason is that the construction of conjugate prior distidms [3, 4] is based on the existence of
sufficient statistics of fixed dimension for the given likelod function (formula (9) in this case).
However, under very weak conditions, the existence of fiietedsional sufficient statistic restricts
the likelihood function to the exponential family of funatis [1, 5]. Unfortunately, (9) does not
belong to the exponential family with continuous utilitesvhenm > 2.

In other words, in this case, there is no known way of derivarfgmily of conjugate priors. Two
ways of circumventing this difficulty present themselvegstHs to discretizew and approximate
it by fitting its values into a finite number of types. The setame is to give up on conjugate
priors altogether and use numerical approximation to upslatVe pursue this last alternative in the
section below, but in the more general case when the typageoit sare not observable.

7 Sequential Dynamic Environmentswith Unobservable Types: |-POMDPs

It turns out that the logit quantal response can be includeidteractive POMDPs (I-POMDPSs)
[8] to model bounded rationality of agents without assunthmg their types (i.e., payoff functions
and beliefs) are known to other agents. As we mentioned, whiddy allowing agent to define
approximately intentional models of agenby including an error rate), into j's type. We define
agent;’s I-POMDP as:

I-POMDP; = (IS;, A, T;,Q;,0;, R;), (11)
where:

e 1S; = S x ©) is a set of interactive states, whefés the set of physical states a@d is a

set of possible approximately intentional models of agemn approximately intentional
model of; is defined a#? = (b;,6?), whereb; is agent;'s belief state, and? = (6, \,).

In 6%, 6; = (A, QJ,TJ,O],RJ,OC ) is j’'s frame, and); is j's (inverse) error rate, as
before. Agentj’s beliefb; is a probability distribution over the physical states agdr

1's approximately intentional models, namélye A(S x ©7).
o A=A, x Ajisthe set of all joint actions of the agents.

T;,: S x Ax S —[0,1] is agent’s transition function.

e (); is agenti’s possible observations.

e 0;:5x AxQ; —[0,1] is agent’s observation function.
e R;:1S; x A— Risagent’s reward function.

If agent: is modeling agent as an approximately intentional I-POMDP agent who behastsmal
with errors represented by logit quantal response, thentaggdates his beliefs within I-POMDPs
as:

bi(ist) =8 > b Zpr oM 0 (st 0l o)

ist*1:0;"t71:9>.‘ t
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in which Pr(a§_1|9?’t’1) is given by logit quantal response:
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Givenj’s typed;, the expected utilities of each action is



U(a;|0;) = ER;(is, a;)b;(is) + v Y _ Pr(ojla;,b;)U((SEp, (b;,a5,05),60;)),  (14)
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wherea; € A; (A; is j's action set).

8 Conclusion

In this paper we postulated that bounded rationality of &glea modeled as noise, or error rate, that
perturbs their rational action selection. Since errorgatieother agents are not directly observable
we presented ways to learn these parameters during iritaractThe learning uses Bayesian up-
date, for which it is convenient to use a family of conjugati®ns over the possible values of the
error rate. We found the conjugate priors of logit quantapmnse functions for static and episodic
environments, and for sequential dynamic environments fivitte number of observable types. The
existence of conjugate priors under these assumptionsatiaéeask of learning another agent’s er-
ror rate simple and tractable. However, we have also shoatriftthe space of types of the modeled
agent is continuous, then the quantal response likelihoaes dot satisfy the precondition needed
for construction of conjugate priors over the error rateiscEtizing their utilities to make continu-
ous types fit into finite pre-specified types can be a way ofisglthis difficulty. Another method is
to abandon the search for conjugate priors and use geneatatagp These updates, derivable from
the I-POMDP framework, do not assume that other agents’'fpayactions and beliefs are known,
but are quite difficult to compute in realistic cases.
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